Distributed Grover for Detecting Cycles in the $\operatorname{CONGEST}$ model

Maël Luce

January 26th, 2024

Maël Luce

Distributed Grover

January 26th, 2024

- ∢ ⊒ →

CONGEST model

Abstraction of a network by a graph G:

- Node *u*: computer. |V| = n
- Edge e: communication channel.

To answer a problem, each node:

- knows the value of *n*
- can differentiate its edges.
- has a unique arbitrary identifier taken in poly(n).
- can output something.

Algorithm defined for every node, for every network.

Synchronous rounds for all the nodes.

- $O(\log n)$ bits sent and received along each edge
- 2 private computation

Round complexity: asymptotic number of rounds for the worst possible graph when $n \rightarrow \infty$.

Required output: each node must know at the end of the algorithm if it is the unique leader.

Algorithm for each node *u*:

Initial setup: m(u) = ID(u)Every round:

- **1** send m(u) to all neighbors
- 2 if received m(v) < m(u), update m(u) = m(v)

Round complexity: In D rounds, for any node u, $m(u) = \min_{v \in V} ID(v)$. Smallest ID is the leader.

Distributed Grover

Distributed Grover

Distributed Grover

Distributed Grover

Centralized Grover

Function $f : X \to \{0, 1\}$. Probability $\geq \epsilon$ of sampling $x \in X, f(x) = 1$.

Start from uniform superposition and repeat $\Theta(\sqrt{\frac{1}{\epsilon}})$ times:

- Apply O_f : reflection through items x, f(x) = 0.
- **2** Apply R_0 : reflection through uniform superposition.

Measure to yield $x \in X$, f(x) = 1.

Distributed version [GM18]

- **Centralized:** repeat $O(\sqrt{\frac{1}{\epsilon}})$ reflections:
 - oracle for f
 - 2 uniform superposition

Distributed: Centralized by leader. repeat $O(\sqrt{\frac{1}{\epsilon}})$ reflections: **1** distributed oracle for f

2 uniform superposition

Analogy works because: classical procedure \rightarrow classical circuit \rightarrow reversible classical circuit \rightarrow quantum circuit \rightarrow quantum oracle

Distributed Grover Theorem

X arbitrary set, $f: X \to \{0,1\}$ s.t. :

- sampling $x \in X$ s.t. f(x) = 1 has probability either 0 or $\geq \epsilon$.
- two classical distributed procedures:
 - **Init:** electing a leader in *D* rounds.
 - **2** Check: decide if f(x) = 1 for any x, in r rounds.

Theorem (Distributed Grover [GM18])

There is a quantum algorithm deciding if $\exists x, f(x) = 1$ in $\tilde{O}(D + \sqrt{\frac{1}{\epsilon}} \cdot r)$ rounds with probability 1 - 1/poly(n) by electing a leader that outputs such an item x.

Problem	Classical	Quantum	Citation
Diameter computation	$\tilde{\Theta}(n)$	$\tilde{O}(\sqrt{nD})$	[GM18]
Triangle detection	$ ilde{O}(n^{1/3})$	$\tilde{O}(n^{1/5})$	[CFGLO22]
Clique detection	$\tilde{O}(n^{1-2/p})$	$\tilde{O}(n^{1-2/(p-1)})$	[CFGLO22]

Table: Round complexity for quantumly sped up problems

3

12 / 23

Image: A matrix

Theorem (Diameter reduction [EFFKO19])

Let F be any fixed, connected k-vertex graph. Let A be a randomized (resp. quantum) algorithm that solves F-freeness for n-node graphs of diameter at most D with T(n, D) round complexity and error probability $\rho = o(1/(n \log n))$. There is a randomized (resp. quantum) algorithm A'that solves F-freeness with round complexity $\tilde{O}(T(n, O(k \log n)) + k \log^2 n)$ and error probability at most $(c\rho n \log n + 1/poly(n))$, for some constant c.

13/23

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A p-cycle is a cycle of length p.

*C*_p-freeness problem:

- If G contains a p-cycle, at least one node must reject.
- All nodes *accept* otherwise.

3

Repeat $\tilde{\Theta}(1)$ times:

1 Nodes \leftarrow color u.a.r. in [0, 4].

2.

3

< A

- ∢ ⊒ →

æ

Repeat $\tilde{\Theta}(1)$ times:

- **1** Nodes \leftarrow color u.a.r. in [0, 4].
- Nodes colored 0 send own ID.
- Received ID forwarded. from color 1 to 2. and from 4 to 3 to 2.
- Golor 2 detects cycle.

э

Color-coding

		-
 	_	

Distributed Grover

January 26th, 2024

2

17 / 23

<ロト < 四ト < 三ト < 三ト

Model	Problem	Classical	Quantum
2-party	Set-Disjointness	$\Omega(N)$	$ ilde{\Omega}(r + rac{N}{r})$ [BGKMT15]
CONGEST	C_{2k+1} -freeness	Ω̃(n) [DKO14]	$ ilde{\Omega}(\sqrt{n})$

Table: Lower bounds

\implies Color-coding is optimal in the classical setting!

What is optimal in a quantum setting ?

3

Quantum Complexity of C_{2k+1} -freeness

Quantum algorithm:

- Elect a leader.
- **2** Set X of identifiers in the graph.
- Olor-coding as the checking.

$\tilde{O}(\sqrt{n})$ rounds. **Optimal !**

- N/	20	100
	i ei ei i	

Quantum Complexity of C_{2k+1} -freeness

Quantum algorithm:

- Elect a leader.
- **2** Set X of identifiers in the graph.
- Olor-coding as the checking.

$\tilde{O}(\sqrt{n})$ rounds. Optimal !

CHEATER !

The problem and the solution

The leader cannot sample identifiers !

Solution:

- Modified Color-coding: nodes colored 0 only have probability 1/n of sending ID.
- 1-sided error algorithm: success probability $\Omega(1) \rightarrow \Omega(1/n)$, complexity $\Theta(n) \rightarrow O(1)$.
- $f : {$ **runs modified color-coding** $} \rightarrow {$ accept, reject $}$.

NB: Similar quantizing for C_{2k} -freeness: from $O(n^{1-1/k})$ to $\tilde{O}(\sqrt{n^{1-1/k}})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• **Short-term:** What else can distributed Grover help speedup ? More *H*-freeness problems ?

• Long-term: Can there exist another type of quantum advantage in the CONGEST model ?

3

A B > A B >

Image: A matrix

References

David Peleg (1990)

Time-optimal Leader Election in General Networks Journal of Parallel and Distributed Computing, Volume 8, Issue 1

Andrew Drucker, Fabian Kuhn, Rotem Oshman (2014)

On the power of the congested clique model PODC'14

Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, Dave Touchette (2015)

Near-optimal bounds on the bounded-round quantum communication complexity of disjointness $\ensuremath{\textit{IEEE}}\xspace$ 2015

François Le Gall, Frédéric Magniez (2018)

Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks PODC'18

François Le Gall, Frédéric Magniez (2018)

Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks PODC'18

Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman (2019)

Sublinear-Time Distributed Algorithms for Detecting Small Cliques and Even Cycles DISC 2019

Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model STACS 2020

Ē.

Keren Censor-Hillel, Orr Fischer, François Le Gall, Dean Leitersdorf, Rotem Oshman (2022)

Quantum Distributed Algorithms for Detection of Cliques ITCS 2022

Maël Luce

Distributed Grover

January 26th, 2024

< □ > < □ > < □ > < □ > < □ > < □ >