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CONGEST model

Abstraction of a network by a graph G :

Node u: computer. |V | = n

Edge e: communication channel.

To answer a problem, each node:

knows the value of n

can differentiate its edges.

has a unique arbitrary identifier taken in poly(n).

can output something.
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Algorithms in the model

Algorithm defined for every node, for every network.

Synchronous rounds for all the nodes.

1 O(log n) bits sent and received along each edge

2 private computation

Round complexity: asymptotic number of rounds for the worst possible
graph when n→∞.
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Example: Leader Election [Peleg90]

Required output: each node must know at the end of the algorithm if it
is the unique leader.

Algorithm for each node u:
Initial setup: m(u) = ID(u)
Every round:

1 send m(u) to all neighbors

2 if received m(v) < m(u), update m(u) = m(v)

Round complexity: In D rounds, for any node u, m(u) = min
v∈V

ID(v).

Smallest ID is the leader.
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Example: Leader Election 
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Example: Leader Election 
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Example: Leader Election 

 

 

 

15

4

8

16 23

42
4

8

4

8

4

4

After 2 rounds
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Example: Leader Election 
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Centralized Grover

Function f : X → {0, 1}.
Probability ≥ ϵ of sampling x ∈ X , f (x) = 1.

Start from uniform superposition and repeat Θ(
√

1
ϵ ) times:

1 Apply Of : reflection through items x , f (x) = 0.

2 Apply R0: reflection through uniform superposition.

Measure to yield x ∈ X , f (x) = 1.
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Distributed version [GM18]

Centralized:

repeat O(
√

1
ϵ ) reflections:

1 oracle for f

2 uniform superposition

Distributed: Centralized by leader.

repeat O(
√

1
ϵ ) reflections:

1 distributed oracle for f

2 uniform superposition

Analogy works because:
classical procedure → classical circuit → reversible classical circuit →
quantum circuit → quantum oracle
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Distributed Grover Theorem

X arbitrary set, f : X → {0, 1} s.t. :
sampling x ∈ X s.t. f (x) = 1 has probability either 0 or ≥ ϵ.

two classical distributed procedures:
1 Init: electing a leader in D rounds.
2 Check: decide if f (x) = 1 for any x , in r rounds.

Theorem (Distributed Grover [GM18])

There is a quantum algorithm deciding if ∃x , f (x) = 1 in Õ(D +
√

1
ϵ · r)

rounds with probability 1− 1/poly(n) by electing a leader that outputs
such an item x .
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Complexity Results

Problem Classical Quantum Citation

Diameter computation Θ̃(n) Õ(
√
nD) [GM18]

Triangle detection Õ(n1/3) Õ(n1/5) [CFGLO22]

Clique detection Õ(n1−2/p) Õ(n1−2/(p−1)) [CFGLO22]

Table: Round complexity for quantumly sped up problems
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H-freeness and diameter reduction

Theorem (Diameter reduction [EFFKO19])

Let F be any fixed, connected k-vertex graph. Let A be a randomized
(resp. quantum) algorithm that solves F -freeness for n-node graphs of
diameter at most D with T (n,D) round complexity and error probability
ρ = o(1/(n log n)). There is a randomized (resp. quantum) algorithm A′

that solves F -freeness with round complexity
Õ(T (n,O(k log n)) + k log2 n) and error probability at most
(cρn log n + 1/poly(n)), for some constant c .
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Cp-freeness

A p-cycle is a cycle of length p.

Cp-freeness problem:

If G contains a p-cycle, at least one node must reject.

All nodes accept otherwise.
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Color-coding

Repeat Θ̃(1) times:

1 Nodes ← color u.a.r. in [0, 4].

2 .

3 .
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Color-coding

Repeat Θ̃(1) times:

1 Nodes ← color u.a.r. in [0, 4].

2 Nodes colored 0 send own ID.

3 Received ID forwarded.
from color 1 to 2.
and from 4 to 3 to 2.

4 Color 2 detects cycle.
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Color-coding

Ω(n)
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Complexity of C2k+1-freeness

Model Problem Classical Quantum

2-party Set-Disjointness Ω(N) Ω̃(r + N
r
) [BGKMT15]

CONGEST C2k+1-freeness Ω̃(n) [DKO14] Ω̃(
√
n)

Table: Lower bounds

=⇒ Color-coding is optimal in the classical setting!

What is optimal in a quantum setting ?
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Quantum Complexity of C2k+1-freeness

Quantum algorithm:

1 Elect a leader.

2 Set X of identifiers in the graph.

3 Color-coding as the checking.

Õ(
√
n) rounds. Optimal !
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Quantum Complexity of C2k+1-freeness

Quantum algorithm:

1 Elect a leader.

2 Set X of identifiers in the graph.

3 Color-coding as the checking.

Õ(
√
n) rounds. Optimal !

CHEATER !
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The problem and the solution

The leader cannot sample identifiers !

Solution:

Modified Color-coding: nodes colored 0 only have probability 1/n of
sending ID.

1-sided error algorithm: success probability Ω(1)→ Ω(1/n),
complexity Θ(n)→ O(1).

f : {runs modified color-coding} → {accept, reject}.

NB: Similar quantizing for C2k -freeness: from O(n1−1/k) to Õ(
√
n1−1/k).

Maël Luce Distributed Grover January 26th, 2024 21 / 23



Conclusion

Short-term: What else can distributed Grover help speedup ? More
H-freeness problems ?

Long-term: Can there exist another type of quantum advantage in
the CONGEST model ?
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