Université de Bordeaux Groupe: Nom prénom:

TECHNIQUES ALGORITHMIQUES ET PROGRAMMATION

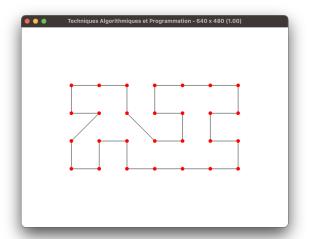
Test de contrôle continu

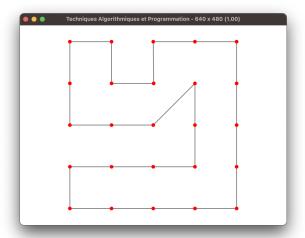
1h30 - seul document autorisé: une feuille (recto/verso) A4 manuscrite.

RÉPONDRE DIRECTEMENT SUR LE SUJET. PENSEZ À UTILISER DU BROUILLON!

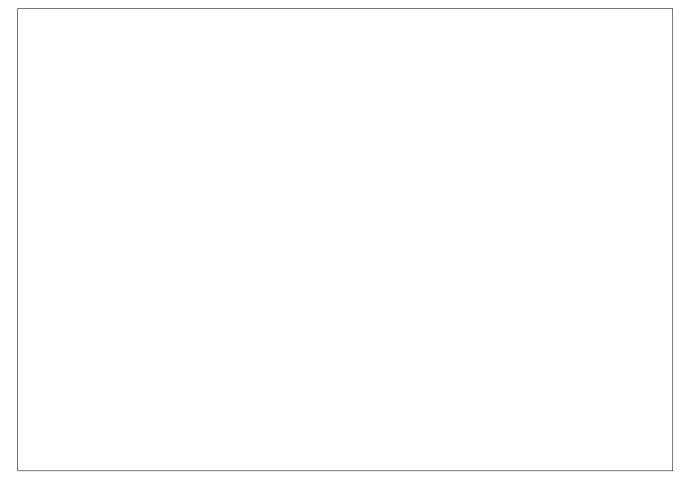
Questions de cours

			ne vu en cours ay	ant une complexit	té non polynom
	nt cette complex	$it \acute{e}.$			
t en donna					
t en donna					
t en donna					
t en donna					
t en donna					
t en donna					
t en donna					


estion 4. Citer	une heuristique qui n'est pas un algorithme d'approximation.	
\perp Γ OUT UH $DTOOLS$	leme donne, une heuristique a toujours une complerite en temps plus t	aible au'ur
algorithme exc	lème donné, une heuristique a toujours une complexité en temps plus f cact. dème de complexité polynomiale, une heuristique est de complexité au	_
algorithme exc Pour un probl nomiale.	cact. l'ème de complexité polynomiale, une heuristique est de complexité au	plus poly
algorithme exc Pour un probl nomiale. Une instance	cact. Dême de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un progran	plus poly
algorithme exe Pour un probl nomiale. Une instance p La complexité	cact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un progranté en temps d'un algorithme est au moins sa complexité en espace.	plus poly
algorithme exc Pour un probl nomiale. Une instance p La complexité Un algorithme	eact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un prograné en temps d'un algorithme est au moins sa complexité en espace. e pour un problème donné peut boucler à l'infini sur certaines de ces in	plus poly
algorithme exectly algorithme exectly algorithme execution problem and algorithme execution algorithms algorithm algorithme execution algorithms algorithm algorithm algorithms algorithm algorithm algorithms algorithm algorithm algorithms algorithm algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithms algorithm algorithm algorithms algorithm algorithm algorithms algorithms algorithm algorithms algorithm algorithms algorithm algo	cact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un prograné en temps d'un algorithme est au moins sa complexité en espace. Le pour un problème donné peut boucler à l'infini sur certaines de ces in indécidables n'ont pas de solution algorithmique.	plus poly
algorithme exe Pour un probl nomiale. Une instance p La complexité Un algorithme Les problèmes Le problème d	cact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un prograné en temps d'un algorithme est au moins sa complexité en espace. Le pour un problème donné peut boucler à l'infini sur certaines de ces in indécidables n'ont pas de solution algorithmique. Au voyageur de commerce est indécidable.	plus polymme C.
algorithme exe Pour un probl nomiale. Une instance p La complexité Un algorithme Les problèmes Le problème d Pour un probl	cact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un prograné en temps d'un algorithme est au moins sa complexité en espace. Le pour un problème donné peut boucler à l'infini sur certaines de ces in indécidables n'ont pas de solution algorithmique.	plus polymme C.
algorithme exc Pour un proble nomiale. Une instance of the complexité La complexité Un algorithme Les problèmes Le problème d Pour un probleme de plus faible qu'e	cact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un prograné en temps d'un algorithme est au moins sa complexité en espace. Le pour un problème donné peut boucler à l'infini sur certaines de ces is indécidables n'ont pas de solution algorithmique. Alu voyageur de commerce est indécidable. Alème donné, un algorithme d'approximation a toujours une complexité	plus polymme C. nstances. é en temps
algorithme exc Pour un proble nomiale. Une instance of the complexité La complexité Un algorithme Les problèmes Le problème d Pour un probleme de plus faible qu'enter de complexité estion 6. Quelle	Pact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un progranté en temps d'un algorithme est au moins sa complexité en espace. The pour un problème donné peut boucler à l'infini sur certaines de ces in se indécidables n'ont pas de solution algorithmique. The du voyageur de commerce est indécidable. The donné, un algorithme d'approximation a toujours une complexité une heuristique. The dest la solution en x de l'équation $2^x = 25$? (on ne demande pas de l'équation $2^x = 25$?)	plus polymme C. nstances. é en temps
algorithme exc Pour un problemomiale. Une instance of the complexité of the complexité of the complexite of the comple	Pact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un progranté en temps d'un algorithme est au moins sa complexité en espace. The pour un problème donné peut boucler à l'infini sur certaines de ces in se indécidables n'ont pas de solution algorithmique. The du voyageur de commerce est indécidable. The donné, un algorithme d'approximation a toujours une complexité une heuristique. The dest la solution en x de l'équation $2^x = 25$? (on ne demande pas de l'équation $2^x = 25$?)	plus polymme C. nstances. é en temps
algorithme exc Pour un proble nomiale. Une instance of the complexité La complexité Un algorithme Les problèmes Le problème d Pour un probleme de plus faible qu'e	Pact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un progranté en temps d'un algorithme est au moins sa complexité en espace. The pour un problème donné peut boucler à l'infini sur certaines de ces in se indécidables n'ont pas de solution algorithmique. The du voyageur de commerce est indécidable. The donné, un algorithme d'approximation a toujours une complexité une heuristique. The dest la solution en x de l'équation $2^x = 25$? (on ne demande pas de l'équation $2^x = 25$?)	plus polymme C. nstances. é en temps
algorithme exc Pour un problemomiale. Une instance of the complexité of the complexité of the complexite of the comple	Pact. Alème de complexité polynomiale, une heuristique est de complexité au particulière d'un problème indécidable peut être résolue par un progranté en temps d'un algorithme est au moins sa complexité en espace. The pour un problème donné peut boucler à l'infini sur certaines de ces in se indécidables n'ont pas de solution algorithmique. The du voyageur de commerce est indécidable. The donné, un algorithme d'approximation a toujours une complexité une heuristique. The dest la solution en x de l'équation $2^x = 25$? (on ne demande pas de l'équation $2^x = 25$?)	plus polymme C. nstances. é en temps


${\bf Questions}~{\bf TD/TP}$

Question 7. Pour la 2-approximation du voyageur de commerce sur n points, on a utilisé le calcu (par Kruskal) d'un arbre couvrant de poids minimum d'un graphe complet. Quelle est la complexit de la première étape de l'algorithme de Kruskal comme implémentée en TP, à savoir remplir une le la complexit de la complexit
tableau d'arêtes et les trier selon leur poids? (à exprimer en fonction de n, justifiez).
Question 8. Pour tout entier $i \in \mathbb{N}$, on souhaite calculer une valeur $D(n)$ selon la formule (de récurrence) suivante :
$D(i) = \begin{cases} \min_{\lfloor i/2 \rfloor \leqslant j \leqslant i-2} \left\{ D(j) + j^2 - i \right\} & sinon \end{cases}$
On rappelle que $\lfloor i/2 \rfloor$ est la partie entière inférieure de $i/2$. Calculer $D(i)$ pour $i=0,1,,7$.
Question 9. Coder en C une fonction int D_prog_dyn(int n) permettant de calculer $D(n)$ (définir précédemment) par programmation dynamique. Vous pourrez supposer connue la constante MAX_IN (l'int maximum). On rappelle qu'en C, $\lfloor i/2 \rfloor$ se code simplement par i/2.


	tion 10. On considère une instance (V, d_1) du voyageur de commerce où $V = \{v_0, \ldots, v_{n-1}\}$ u ble de $n > 2$ points, et d_1 une fonction de distance définie par $d_1(v_i, v_j) = j - i $. En admettar
	our tout $x, y \in \mathbb{R}$, $ x + y \leq x + y $, montrer que d_1 vérifie l'inégalité triangulaire.
	tion 11. On reprend la question précédente en changeant la distance par $d_2(v_i, v_j) = \min\{i, j\}$ que l'inégalité triangulaire est vérifiée? Justifiez.
Montr	tion 12. On reprend la question précédente en changeant la distance par $d_3(v_i, v_j) = \max\{i, j\}$ rer, en les dessinant, que les arbres couvrants de poids minimum des graphes complets corres ent à (V, d_2) et (V, d_3) , lorsque $n = 6$, peuvent être les mêmes. Quels sont leurs poids?

Question 13. Ci-dessous sont représentées les tournées pour des points placés régulièrement sur les sommets de grilles 4x7 et 5x5. Elles ont été obtenues par un programme développé en TP par un étudiant de L3.

Il se pose la question de savoir si les tournées sont optimales. En supposant que deux points voisins de la grille sont à distance 1, argumenter en faveur ou en défaveur de l'optimalité de la tournée de gauche. Même question pour la tournée de droite. [Aide : une grille $p \times q$ possède un cycle hamiltonien si et seulement si au moins une des dimensions est paire.]

Notations asymptotiques

Pour les QCM suivants, vous devez entourer les lettres devant vos réponses.

Question 14. Parmi les notations asymptotiques ou expressions suivantes, quelles sont celles qui sont à éviter (s'il y en a) :

- a. $2^{O(n)}$
- b. $\Omega(n) = O(n^2)$
- c. $O(\log_2 n)$

Question 15. Parmi les expressions suivantes sur les asymptotiques, lesquelles sont incorrectes?

- a. $3^n = O(2^n)$
- b. $n + n^2 = \Omega(n^3)$
- c. $2n + 1 = O(n^2)$
- d. $2^n = O(n^2)$
- $e. \ 2^n = 2^{n/8 O(1)}$

Question 16. Pour un entier n > 0, combien vaut la somme $n - 1 + n - 2 + n - 3 + \cdots + 2 + 1$? Indiquer parmi les expressions ci-dessous toutes celles correspondant à cette somme (s'il y en a une!).

- $a. n^2$
- b. $(n+1)^2/2$
- c. $(n-1)^2/2$
- d. (n-1)!/2
- e. n(n+1)/2
- f. (n+1)(n-2)/2
- $g. \binom{n}{2}$
- h. n!/(2!(n-2)!)
- *i.* $\sum_{i=1}^{n-1} i$ *j.* $\sum_{i=0}^{n-1} i$