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@ Advanced Data Structures
@ Dynamic Sets
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Dynamic Sets: the abstract data type

To manage variable sets of elements of a same type, identified by a key:

element

position —>| key|field 2|field 3]... |

we need to implement the following primitive functions:

o INSERT(element)
o DELETE(position)
o SEARCH(key)

We wish to minimize
o the running time of the primitive functions

@ the additional memory used to store informations.
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Design and Analysis of Algorithms:Advanced Data Structures

@ Advanced Data Structures

@ List Structures
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Simple Arrays
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@ Memory use : the expected maximal size of the set

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021



Simple Arrays

@ Memory use : the expected maximal size of the set
o INSERT(element): O(1)
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Simple Arrays
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@ Memory use : the expected maximal size of the set
o INSERT(element): O(1)
o DELETE(position=index): ©(1)
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Simple Arrays
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Memory use : the expected maximal size of the set
INSERT (element): ©(1)

DELETE (position=index): O(1)

SEARCH(key): O(n)
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Linked Lists

first position e I 2| I I 3] I I 1] I I 5| |

@ Extra memory use : proportional to the size of the set
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Linked Lists

-

first position e I 2| I I 3] I I 1] I I 5| |

@ Extra memory use : proportional to the size of the set
o INSERT(element): O(1)
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Linked Lists

first position | 2| |—>| 3 I - 5|

@ Extra memory use : proportional to the size of the set
o INSERT(element): O(1)

o DELETE(position=location of previous item): ©(1)
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Linked Lists

first position | 2| |—>| 3 I - 5|

@ Extra memory use : proportional to the size of the set

o INSERT(element): O(1)

o DELETE(position=location of previous item): ©(1)
® SEARCH(key): O(n)
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Key-Sorted Arrays

@ Memory use : the expected maximal size of the set
© SEARCH(key): O(log, n)
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Key-Sorted Arrays

@ Memory use : the expected maximal size of the set
© SEARCH(key): O(log, n)
o INSERT(element): O(n)
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Key-Sorted Arrays

N

Memory use : the expected maximal size of the set
SEARCH (key): O(log, n)

INSERT (element): O(n)

DELETE (position=index): O(n)
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Direct-Access Tables

Key-indexed array Elements

o SEARCH(key): ©(1)
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Direct-Access Tables

Key-indexed array Elements

o SEARCH(key): O(1), INSERT (element): O(1)
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Direct-Access Tables

Key-indexed array Elements
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o SEARCH(key): ©(1), INSERT(element): ©(1), DELETE(key): O(1)
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Direct-Access Tables

Key-indexed array Elements

© 00 N o a0 W N~ O

o SEARCH(key): ©(1), INSERT(element): ©(1), DELETE(key): O(1)

@ Extra memory use: an array indexed by all possible keys
(may be huge, if not infinitel)
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Hash Tables

Hash-indexed array
hash Elements

0(1)

1 collision I 12] I I 11| |

0 collision 14|

2 collisions I 28| I 17| I 10|

2
3

1 collision |5 \ }42\ } }13| |
6 |

@ Extra memory use: the (fixed) size of the hash table
o INSERT(element), DELETE(position): O(1)
@ SEARCH(key): O(1 + maximal number of collisions)

Applications: address books, symbol tables, dictionaries...

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 10 / 28



Hashing Techniques

A hash function must associate with each key k a value h(k), 0 < h(k) < m where m is
the size of the hash table.
o Division: h(k) =x% m
where x is an interpretation of k as an integer:
o typically 3" 2/b; where b; is the i-th bit of the key
e more generally >~ a;x; where the a; are constant values, and the x; represent fixed-size
parts of the key.
In practice, to minimize the maximal number of collisions, m should be a prime
number “not too close to a power of 2".

o Muiltiplication: h(k) = m(Ax — |Ax|) where A is a real constant, 0 < A < 1.
Advantage: in practice, no constraint on m.
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Design and Analysis of Algorithms:Advanced Data Structures

@ Advanced Data Structures

@ Tree structures
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Heaps: a partially ordered structure

\ 2\ /N

(13 | Ji2 | [uy | 4l | 10|

o Shape : n first nodes of the complete binary tree of height h (2" < n < 2"1)
@ Ordering : the key of a node < the keys of its children
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Heaps: Algorithms
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o SEARCH(key): O(n) — MINIMUM(): ©(1)
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Heaps: Algorithms
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o SEARCH(key): O(n) — MINIMUM(): ©(1)
o INSERT : put it as the next free node and fix the heap recursively
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Heaps: Algorithms
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o SEARCH(key): O(n) — MINIMUM(): ©(1)
o INSERT : put it as the next free node and fix the heap recursively
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Heaps: Algorithms

o |
5

VAN / AN
ENNEN RN

o SEARCH(key): O(n) — MINIMUMO): ©(1)
@ INSERT (element): O(h) = O(log,(n))
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Heaps: Algorithms
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o SEARCH(key): O(n) — MINIMUMO): ©(1)
@ INSERT (element): O(h) = O(log,(n))
o DELETE : swap it with the last node (to be deleted)
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Heaps: Algorithms
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o SEARCH(key): O(n) — MINIMUM(): ©(1)
@ INSERT (element): O(h) = O(log,(n))
o DELETE : fix the heap recursively
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Heaps: Algorithms

RN SN
£l 19

/ N\ /\ /
ENRENERER - 10|

o SEARCH(key): O(n) — MINIMUM(): ©(1)
@ INSERT (element): O(h) = O(log,(n))
o DELETE : fix the heap recursively
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Heaps: Algorithms

5
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o SEARCH(key): O(n) — MINIMUMO): ©(1)
@ INSERT (element): O(h) = O(log,(n))
@ DELETE (position): O(h) = O(log,(n))

Application: priority queues.
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Binary Search Trees: recursive partially ordered structures

@ Shape: either empty (not drawn), or a root node with two BST children

> all keys stored in the left child

® Ordering: key of the root{ < all keys stored in the right child
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Binary Search Trees: Algorithms

SEARCH(6)

o SEARCH
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Binary Search Trees: Algorithms

SEARCH(6)

@ SEARCH
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Binary Search Trees: Algorithms

SEARCH(G)
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not found

o SEARCH(key): O(h)
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Binary Search Trees: Algorithms

INSERT (element with key 6)

@ SEARCH(key): O(h) — INSERT (element): O(h)
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Binary Search Trees: Algorithms

o] z

o SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:
o If the node has no child, remove it.
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Binary Search Trees: Algorithms

@ SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:

o If the node has no child, remove it.
o If the node has 1 child, link the child to the parent.
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Binary Search Trees: Algorithms

@ SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:

o If the node has no child, remove it.
o If the node has 1 child, link the child to the parent.
o If the node has 2 children, swap it with its successor
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Binary Search Trees: Algorithms

@ SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:

o If the node has no child, remove it.
o If the node has 1 child, link the child to the parent.
o If the node has 2 children, swap it with its successor, and remove the successor.
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Binary Search Trees: Algorithms

o SEARCH(key): O(h) — INSERT (element): O(h)
o DELETE(position): O(h)
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Binary Search Trees: the height problem

o SEARCH(key), INSERT (element), DELETE (position) are all O(h)

@ but h may be equal to n.
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Binary Search Trees: Rotations

\i {ﬁ

Running time of a rotation: ©(1).
Rotations may change the height!
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Red-Black Trees: the structure

A RBT is a binary search tree with each node colored red or black such that
@ The root is black.
Every leaf (NIL) is black.

@ The children of a red node are black.

@ From any node, all paths to the leaves have the same number of black nodes.

Remark: the subtree rooted at any node of a RBT is a RBT, except for the color of the
root.
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Red-Black Trees: Log-bounded Height

b< |0g2(n+ 1) { n: number of nodes

b: number of black nodes on paths from root to leaves
Proof by structural induction:

o If the tree is empty, b =0 and n =0, thus b < logz(n+ 1).
o If the property is true for the children, then it is true for the tree:

ik

—b b =b+1=b+1
=bh = .
< log,(min(ny, n2) + 1) + logy2
= |og2(n1 +1) < log,(2 min(ny, n2) + 2)
< logy(n +1) < log,(n+1)

Since the children of a red node are black, h < 2 x b and thus

h < 2log,(n+1)
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Red-Black Trees: INSERT

Use the INSERT algorithm for Binary Search Trees and colour the new node red.
If its parent is black the tree is still a RBT, otherwise fix it up.

o If the parent’s sibling is black, rotate and recolour.

fixed —

fix —

o Otherwise, recolour and recursively fix up if necessary (at most h steps).
<« fix if parent is red

fix — fixed —
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Red-Black Trees: DELETE

Use the DELETE algorithm for Binary Search Trees (in time O(h)).
If a red or childless node was removed, the tree is still a RBT.
Otherwise, the removal created a defective subtree:

s

black node removed 4>’

defective subtree ————

Fix up the defective subtree:

o If its root is red, colour it black.
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Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If its root has a black sibling with a red child, rotate and recolour.

i g
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Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If its root has a black sibling with black children, and a red parent, rotate and
recolour.
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Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If the root has a black sibling with black children, and a black parent:
rotate, recolour and recursively fix up.

<—— new root
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Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If the root has a red sibling, rotate, recolour and recursively fix up.

The root of the defective tree will never move above the red parent.

Thus the total number of recursive fixes is at most 2 x h, and finally DELETE (position)
runs in time O(log, n).
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