Advanced Algorithmics and Artificial Intelligence

Olivier Baudon

Université de Bordeaux

March 2021

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Design and Analysis of Algorithms

@ Advanced Data Structures

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Design and Analysis of Algorithms:Advanced Data Structures

@ Advanced Data Structures
@ Dynamic Sets

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Dynamic Sets: the abstract data type

To manage variable sets of elements of a same type, identified by a key:

element

position —>| key|field 2|field 3]... |

we need to implement the following primitive functions:

o INSERT(element)
o DELETE(position)
o SEARCH(key)

We wish to minimize
o the running time of the primitive functions

@ the additional memory used to store informations.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Design and Analysis of Algorithms:Advanced Data Structures

@ Advanced Data Structures

@ List Structures

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Simple Arrays

ENENENEN"

@ Memory use : the expected maximal size of the set

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Simple Arrays

@ Memory use : the expected maximal size of the set
o INSERT(element): O(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Simple Arrays

ENENENEN
ENEN €
ENENENDN

@ Memory use : the expected maximal size of the set
o INSERT(element): O(1)
o DELETE(position=index): ©(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Simple Arrays

ENENENEN
ENEN €
ENENENDN

Memory use : the expected maximal size of the set
INSERT (element): ©(1)

DELETE (position=index): O(1)

SEARCH(key): O(n)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Linked Lists

first position e I 2| I I 3] I I 1] I I 5| |

@ Extra memory use : proportional to the size of the set

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Linked Lists

-

first position e I 2| I I 3] I I 1] I I 5| |

@ Extra memory use : proportional to the size of the set
o INSERT(element): O(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Linked Lists

first position | 2| |—>| 3 I - 5|

@ Extra memory use : proportional to the size of the set
o INSERT(element): O(1)

o DELETE(position=location of previous item): ©(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Linked Lists

first position | 2| |—>| 3 I - 5|

@ Extra memory use : proportional to the size of the set

o INSERT(element): O(1)

o DELETE(position=location of previous item): ©(1)
® SEARCH(key): O(n)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Key-Sorted Arrays

@ Memory use : the expected maximal size of the set
© SEARCH(key): O(log, n)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 8 /28

Key-Sorted Arrays

@ Memory use : the expected maximal size of the set
© SEARCH(key): O(log, n)
o INSERT(element): O(n)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 8 /28

Key-Sorted Arrays

N

Memory use : the expected maximal size of the set
SEARCH (key): O(log, n)

INSERT (element): O(n)

DELETE (position=index): O(n)

5|

ENERERE
|

1| 3|
ENENENE

oW

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 8 /28

Direct-Access Tables

Key-indexed array Elements

o SEARCH(key): ©(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Direct-Access Tables

Key-indexed array Elements

o SEARCH(key): O(1), INSERT (element): O(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Direct-Access Tables

Key-indexed array Elements

© 00 N o a0 W N~ O

o SEARCH(key): ©(1), INSERT(element): ©(1), DELETE(key): O(1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Direct-Access Tables

Key-indexed array Elements

© 00 N o a0 W N~ O

o SEARCH(key): ©(1), INSERT(element): ©(1), DELETE(key): O(1)

@ Extra memory use: an array indexed by all possible keys
(may be huge, if not infinitel)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Hash Tables

Hash-indexed array
hash Elements

0(1)

1 collision I 12] I I 11| |

0 collision 14|

2 collisions I 28| I 17| I 10|

2
3

1 collision |5 \ }42\ } }13| |
6 |

@ Extra memory use: the (fixed) size of the hash table
o INSERT(element), DELETE(position): O(1)
@ SEARCH(key): O(1 + maximal number of collisions)

Applications: address books, symbol tables, dictionaries...

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 10 / 28

Hashing Techniques

A hash function must associate with each key k a value h(k), 0 < h(k) < m where m is
the size of the hash table.
o Division: h(k) =x% m
where x is an interpretation of k as an integer:
o typically 3" 2/b; where b; is the i-th bit of the key
e more generally >~ a;x; where the a; are constant values, and the x; represent fixed-size
parts of the key.
In practice, to minimize the maximal number of collisions, m should be a prime
number “not too close to a power of 2".

o Muiltiplication: h(k) = m(Ax — |Ax|) where A is a real constant, 0 < A < 1.
Advantage: in practice, no constraint on m.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Design and Analysis of Algorithms:Advanced Data Structures

@ Advanced Data Structures

@ Tree structures

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 12 /28

Heaps: a partially ordered structure

\ 2\ /N

(13 | Ji2 | [uy | 4l | 10|

o Shape : n first nodes of the complete binary tree of height h (2" < n < 2"1)
@ Ordering : the key of a node < the keys of its children

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 13 /28

Heaps: Algorithms

RN RN
5
(13 | |12 | |1 |]\4| | 10|/

o SEARCH(key): O(n) — MINIMUM(): ©(1)

d Algorithmics and Artificial Intelligence

Heaps: Algorithms

/ N\ /
(13 | [i21] [][4]] | o]

o SEARCH(key): O(n) — MINIMUM(): ©(1)
o INSERT : put it as the next free node and fix the heap recursively

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 13 /28

Heaps: Algorithms

(o]
SN N
Lo] 15
VAN VAN /N
ENNEN RN

o SEARCH(key): O(n) — MINIMUM(): ©(1)
o INSERT : put it as the next free node and fix the heap recursively

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 13 /28

Heaps: Algorithms

o |
5

VAN / AN
ENNEN RN

o SEARCH(key): O(n) — MINIMUMO): ©(1)
@ INSERT (element): O(h) = O(log,(n))

d Algorithmics and Artificial Intelligence

Heaps: Algorithms

EN
SN N

e
15
VAN AN

o1]

(13 | Ji2 | [uy | 4l | 10|

o SEARCH(key): O(n) — MINIMUMO): ©(1)
@ INSERT (element): O(h) = O(log,(n))
o DELETE : swap it with the last node (to be deleted)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 13 /28

Heaps: Algorithms

o1]
N TN

] EN 15
/\ /

(13 | Ji2 | [uy | 4l | 10|

o SEARCH(key): O(n) — MINIMUM(): ©(1)
@ INSERT (element): O(h) = O(log,(n))
o DELETE : fix the heap recursively

d Algorithmics and Artificial Intelligence

Heaps: Algorithms

RN SN
£l 19

/ N\ /\ /
ENRENERER - 10|

o SEARCH(key): O(n) — MINIMUM(): ©(1)
@ INSERT (element): O(h) = O(log,(n))
o DELETE : fix the heap recursively

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 13 /28

Heaps: Algorithms

5

/ N\ / \ /
ENRENERER - 10|

o SEARCH(key): O(n) — MINIMUMO): ©(1)
@ INSERT (element): O(h) = O(log,(n))
@ DELETE (position): O(h) = O(log,(n))

Application: priority queues.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 13 /28

Binary Search Trees: recursive partially ordered structures

@ Shape: either empty (not drawn), or a root node with two BST children

> all keys stored in the left child

® Ordering: key of the root{ < all keys stored in the right child

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 14 / 28

Binary Search Trees: Algorithms

SEARCH(6)

o SEARCH

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 15 / 28

Binary Search Trees: Algorithms

SEARCH(6)

@ SEARCH

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 15 / 28

Binary Search Trees: Algorithms

SEARCH(6)

@ SEARCH

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 15 / 28

Binary Search Trees: Algorithms

SEARCH(6)

@ SEARCH

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 15 / 28

Binary Search Trees: Algorithms

SEARCH(G)

\

T /\
(4]

/N /\
exfll

not found

o SEARCH(key): O(h)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 15 / 28

Binary Search Trees: Algorithms

INSERT (element with key 6)

@ SEARCH(key): O(h) — INSERT (element): O(h)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 16 / 28

Binary Search Trees: Algorithms

o] z

o SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:
o If the node has no child, remove it.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 17 / 28

Binary Search Trees: Algorithms

@ SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:

o If the node has no child, remove it.
o If the node has 1 child, link the child to the parent.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 17 / 28

Binary Search Trees: Algorithms

@ SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:

o If the node has no child, remove it.
o If the node has 1 child, link the child to the parent.
o If the node has 2 children, swap it with its successor

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 17 / 28

Binary Search Trees: Algorithms

@ SEARCH(key): O(h) — INSERT (element): O(h)
@ DELETE:

o If the node has no child, remove it.
o If the node has 1 child, link the child to the parent.
o If the node has 2 children, swap it with its successor, and remove the successor.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 17 / 28

Binary Search Trees: Algorithms

o SEARCH(key): O(h) — INSERT (element): O(h)
o DELETE(position): O(h)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 18 /28

Binary Search Trees: the height problem

o SEARCH(key), INSERT (element), DELETE (position) are all O(h)

@ but h may be equal to n.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 19 / 28

Binary Search Trees: Rotations

\i {ﬁ

Running time of a rotation: ©(1).
Rotations may change the height!

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 20 / 28

Red-Black Trees: the structure

A RBT is a binary search tree with each node colored red or black such that
@ The root is black.
Every leaf (NIL) is black.

@ The children of a red node are black.

@ From any node, all paths to the leaves have the same number of black nodes.

Remark: the subtree rooted at any node of a RBT is a RBT, except for the color of the
root.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 21 /28

Red-Black Trees: Log-bounded Height

b< |0g2(n+ 1) { n: number of nodes

b: number of black nodes on paths from root to leaves
Proof by structural induction:

o If the tree is empty, b =0 and n =0, thus b < logz(n+ 1).
o If the property is true for the children, then it is true for the tree:

ik

—b b =b+1=b+1
=bh = .
< log,(min(ny, n2) + 1) + logy2
= |og2(n1 +1) < log,(2 min(ny, n2) + 2)
< logy(n +1) < log,(n+1)

Since the children of a red node are black, h < 2 x b and thus

h < 2log,(n+1)

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Red-Black Trees: INSERT

Use the INSERT algorithm for Binary Search Trees and colour the new node red.
If its parent is black the tree is still a RBT, otherwise fix it up.

o If the parent’s sibling is black, rotate and recolour.

fixed —

fix —

o Otherwise, recolour and recursively fix up if necessary (at most h steps).
<« fix if parent is red

fix — fixed —

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 23 /28

Red-Black Trees: DELETE

Use the DELETE algorithm for Binary Search Trees (in time O(h)).
If a red or childless node was removed, the tree is still a RBT.
Otherwise, the removal created a defective subtree:

s

black node removed 4>’

defective subtree ————

Fix up the defective subtree:

o If its root is red, colour it black.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 24 /28

Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If its root has a black sibling with a red child, rotate and recolour.

i g

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 25 /28

Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If its root has a black sibling with black children, and a red parent, rotate and
recolour.

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 26 / 28

Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If the root has a black sibling with black children, and a black parent:
rotate, recolour and recursively fix up.

<—— new root

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021

Red-Black Trees: DELETE (continued)

Fix up the defective subtree (continued):

o If the root has a red sibling, rotate, recolour and recursively fix up.

The root of the defective tree will never move above the red parent.

Thus the total number of recursive fixes is at most 2 x h, and finally DELETE (position)
runs in time O(log, n).

Olivier Baudon (Université de Bordeaux) Advanced Algorithmics and Atrtificial Intelligence March 2021 28 /28

	Design and Analysis of Algorithms
	Advanced Data Structures
	Dynamic Sets
	List Structures
	Tree structures

