A SYMMETRY PROPERTY OF SOME HARMONIC ALGEBRAIC CURVES

JEAN-CHRISTOPHE AVAL, JEAN-FRANÇOIS MARCKERT

Abstract

The aim of this note is to give and to prove a simple and surprising symmetry property of some harmonic algebraic curves: when all the roots z_{i} of a complex polynomial P lie on the unit circle \mathcal{U}, the points of \mathcal{U} different from the z_{i}, and such that $\operatorname{Arg}(P(z))=\theta$, form a regular n-gon, where n is the degree of P.

Let $\mathbf{z}=\left\{z_{1}, \ldots, z_{n}\right\}$ be a multiset of n points in the complex plane \mathbb{C} and P the monic polynomial with root set z:

$$
P(z)=\prod_{i=1}^{n}\left(z-z_{i}\right)
$$

For θ a fixed real number of your choice, consider

$$
C_{\theta}(P)=\left\{z \in \mathbb{C}: \operatorname{Im}\left(e^{-i \theta} P(z)\right)=0\right\}
$$

The set $C_{\theta}(P)$ coincides up to \mathbf{z}, to the set $\{z \in \mathbb{C}: \operatorname{Arg}(P(z))=\theta[\pi]\}$. These curbs arise in the Gauss approach to the Fundamental Theorem of Algebra (see e.g. Stillwell [3], and Martin \& al. [1]). In their paper Martin \& al. [1] and then Savitt [2] initiated the study of the combinatorial topology of the families $C_{\theta}(P)$. The idea are the following ones: the curves $C_{\theta}(P)$ have $2 n$ asymptotes at angles $(\pi k+\theta) / n$, for $k \in\{0, \ldots, 2 n-1\}$, and form in the generic case n non intersecting curves. This induces a matching: k and k^{\prime} are matched if and only if the asymptotes $(\pi k+\theta) / n$ and $\left(\pi k^{\prime}+\theta\right) / n$ lie on the same connected component in $C_{\theta}(P)$. The papers [1] and [2] aim at studying these matchings, and also the properties of the so-called necklaces, formed by the families of matchings obtained when θ traverses the set $[0, \pi]$.

Let us now state and prove our result. The set \mathbf{z} is clearly included in $C_{\theta}(P)$. It turns out that when \mathbf{z} is included in the unit circle $\mathcal{U}=\{z:|z|=1\}$, the set $C_{\theta}(P) \cap \mathcal{U}$ presents a quite surprising symmetry - illustrated at Figure 1 - that can be stated as follows.

Proposition 1. If \mathbf{z} is a subset of \mathcal{U}, then

$$
C_{\theta}(P) \cap \mathcal{U}=\mathbf{z} \cup G(\mathbf{z})
$$

where $G(\mathbf{z})$ is the regular n-gon on \mathcal{U}, with set of vertices $\left\{e^{i(\Omega+2 k \pi / n)}, k=1, \ldots, n\right\}$, for

$$
\Omega:=\frac{2 \theta-\sum_{j=1}^{n} \operatorname{Arg}\left(z_{j}\right)}{n}-\pi
$$

There exists a purely geometric proof of this Proposition using that the measure of a central angle is twice that of the inscribed angle intercepting the same arc; we provide below a more compact analytic proof.

This work has been supported by the ANR project MARS (BLAN06-2_0193).

Proof. We will only consider $z \notin \mathbf{z}$. We have the equivalence:

$$
z \in C_{\theta}(P) \backslash \mathbf{z} \quad \Longleftrightarrow \quad z \notin \mathbf{z}, \sum_{i=1}^{n} \operatorname{Arg}\left(z-z_{i}\right)=\theta \quad[\pi]
$$

where $\operatorname{Arg}(z) \in \mathbb{R} / 2 \pi \mathbb{Z}$ stands for (any chosen determination of) the argument of $z \neq 0$. Now for any ν and ψ real numbers,

$$
e^{i \nu}-e^{i \psi}=e^{i \frac{\nu+\psi}{2}}\left(e^{i \frac{\nu-\psi}{2}}-e^{i \frac{-\nu+\psi}{2}}\right)=2 i \sin ((\nu-\psi) / 2) e^{i \frac{\nu+\psi}{2}} .
$$

Thus

$$
\operatorname{Arg}\left(e^{i \nu}-e^{i \psi}\right)=\frac{\nu+\psi}{2}+\frac{\pi}{2}+\pi \times \operatorname{sgn}(\sin ((\nu-\psi) / 2)) \quad[2 \pi]
$$

Hence, $z \in C_{\theta}(P) \backslash \mathbf{z}$ is equivalent to:

$$
z \notin \mathbf{z}, \sum_{j=1}^{n}\left(\frac{\operatorname{Arg}(z)+\operatorname{Arg}\left(z_{j}\right)}{2}+\frac{\pi}{2}\right)=\theta[\pi],
$$

which leads to the conclusion at once.

Figure 1. An example where $n=7, \theta=0$ and the roots z_{i} randomly chosen.
Note. If z_{i} is a root of multiplicity k of P, and if z_{i} belongs to $G(\mathbf{z})$, then in the neighborhood of $z_{i}, C_{\theta}(P)$ has k tangents, one of them coinciding with the tangent of the circle at z_{i}. Moreover, it is simple to check that if z_{i} is not on $G(\mathbf{z})$, then the tangents of $C_{\theta}(P)$ at z_{i} are not tangent to \mathcal{U}.

References

[1] J. Martin, D. Savitt, T. Singer,Harmonic algebraic curves and noncrossing partitions, Discrete and Computational Geometry 37, no. 2 (2007), 267-286.
[2] D. Savitt, Polynomials, meanders, and paths in the lattice of noncrossing partitions, arXiv:math/0606169.
[3] J. Stillwell, Mathematics and its history. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1989.
(J.-C. Aval, J.-F. Marckert) LaBRI, CNRS, Université de Bordeaux, 351 cours de la Libération, 33405 TALENCE CEDEX, FRANCE

E-mail address: aval@labri.fr, marckert@labri.fr URL: http://www.labri.fr/perso/aval, http://www.labri.fr/perso/marckert

