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Abstract. The aim of this work is to enumerate alternating sign matrices
(ASM) that are quasi-invariant under a quarter-turn. The enumeration for-
mula (conjectured by Duchon) involves, as a product of three terms, the num-
ber of unrestricted ASM’s and the number of half-turn symmetric ASM’s.

1. Introduction

An alternating sign matrix is a square matrix with entries in {−1, 0, 1} and such
that in any row and column: the non-zero entries alternate in sign, and their sum
is equal to 1. Their enumeration formula was conjectured by Mills, Robbins and
Rumsey [8], and proved years later by Zeilberger [16], and almost simultaneously
by Kuperberg [6].

Kuperberg’s proof is based on the study of the partition function of a square
ice model whose states are in bijection with ASM’s. Kuperberg was able to get an
explicit formula for the partition function for some special values of the spectral
parameter. To do this, he used a Yang-baxter formula and recursive relations
obtained by Korepin [5] for the determinant representation of the partition function
discovered by Izergin [4].

This method is more flexible than Zeilberger’s original proof and Kuperberg also
used it in [7] to obtain many enumeration or equinumeration results for various
symmetry classes of ASM’s, most of them having been conjectured by Robbins
[13]. Among these results can be found the following remarkable one.

Theorem 1. (Kuperberg). The number AQT(4N) of ASM’s of size 4N invariant
under a quarter-turn (QTASM’s) is related to the number A(N) of (unrestricted)
ASM’s of size N and to the number AHT(2N) of ASM’s of size 2N invariant under
a half-turn (HTASM’s) by the formula:

AQT(4N) = AHT(2N)A(N)2. (1)

More recently, Razumov and Stroganov [12] applied Kuperberg’s strategy to
settle the following result relative to QTASM’s of odd size, also conjectured by
Robbins [13] .

Theorem 2. (Razumov, Stroganov). The numbers of QTASM’s of odd size are
given by the following formulas, where AHT(2N + 1) is the number of HTASM’s of
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size 2N + 1:

AQT(4N − 1) = AHT(2N − 1)A(N)2 (2)

AQT(4N + 1) = AHT(2N + 1)A(N)2. (3)

It is easy to observe (and will be proved in Section 2) that the set of QTASM’s of
size 4N +2 is empty. But, by slightly relaxing the symmetry condition at the center
of the matrix, Duchon introduced in [3, 2] the notion of ASM’s quasi-invariant under
a quarter turn (the definition will be given in Section 2) whose class is non-empty in
size 4N +2. Moreover, he conjectured for these qQTASM’s an enumeration formula
that perfectly completes the three previous enumeration results on QTASM. It is
the aim of this paper to establish this formula.

Theorem 3. The number AQT(4N + 2) of qQTASM of size 4N + 2 is given by:

AQT(4N + 2) = AHT(2N + 1)A(N)A(N + 1). (4)

This paper is organized as follows: in Section 2, we define qQTASM’s; in Sec-
tion 3, we recall the definitions of square ice models, precise the parameters and
the partition functions that we shall study, and give the formula corresponding to
equation (4) at the level of partition functions; Section 4 is devoted to the proofs;
open questions are presented in Section 5.

2. ASM’s quasi-invariant under a quarter-turn

The class of ASM’s invariant under a rotation by a quarter-turn (QTASM) is
non-empty in size 4N − 1, 4N , and 4N + 1. But this is not the case in size 4N + 2.

Lemma 4. There is no QTASM of size 4N + 2.

Proof. Let us suppose that M is a QTASM of even size 2L. Now we use the fact
that the size of an ASM is given by the sum of its entries, and the symmetry of M
to write:

2L =
∑

1≤i,j≤2L

Mi,j = 4 ×
∑

1≤i,j≤L

Mi,j (5)

which implies that the size of M has to be a multiple of 4. �

Duchon introduced in [3, 2] a notion of ASM’s quasi-invariant under a quarter-
turn, by slightly relaxing the symmetry condition at the center of the matrix. The
definition is more simple when considering the height matrix associated to the ASM,
but can also be given directly.

Definition 5. An ASM M of size 4N + 2 is said to be quasi-invariant under a
quarter-turn (qQTASM) if its entries satisfy the quarter-turn symmetry

M4N+3−j,4N+3−i = Mi,j (6)

except for the four central entries (M2N+1,2N+1, M2N+1,2N+2, M2N+2,2N+1, M2N+2,2N+2)
that have to be either (0,−1,−1, 0) or (1, 0, 0, 1).
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We give below two examples of qQTASM’s of size 6, with the two possible pat-
terns at the center.

















0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 −1 1 0
0 1 −1 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

































0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 −1 0 1 0 0
0 1 0 −1 1 0
0 0 0 1 0 0

















In the next section, we associate square ice models to ASM’s with various types
of symmetry.

3. Square ice models and partition functions

3.1. Notations. Using Kuperberg’s method we introduce square ice models asso-
ciated to ASM’s, HTASM’s and (q)QTASM’s. We recall here the main definitions
and refer to [7] for details and many examples.

Let a ∈ C be a global parameter. For any complex number x different from zero,
we denote x = 1/x, and we define:

σ(x) = x − x. (7)

Let G denote some graph1 where every vertex has degree 1, 2 or 4, with a fixed
orientation attached to each edge incident to a vertex of degree 1. An ice state
of G is an orientation of the remaining edges such that every tetravalent vertex
has exactly two incoming and two outgoing edges, and each vertex of degree 2 has
either two incoming or two outgoing edges.

A parameter x 6= 0 is assigned to one of the angles between consecutive incident
edges around each tetravalent vertex of the graph G. Then this vertex gets a weight,
which depends on the orientation of incident edges, as shown on Figure 1; the reader
can check that weights are unchanged if one of the angle parameters is moved an
adjacent angle of the same vertex, and simultaneously replaced by its inverse.

b

x
=

σ(a2) σ(a2) σ(ax) σ(ax) σ(ax) σ(ax)

Figure 1. The 6 possible orientations and their associated weights

It is sometimes easier to assign parameters, not to each vertex of the graph, but
to the lines that compose the graph. In this case, the weight of a vertex is defined
as:

x

y

=
xy

1Actually, our “graphs” are planar graphs together with a plane embedding.
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When this convention is used, a parameter explicitly written at a vertex replaces
the quotient of the parameters of the lines.

We will put a dotted line to indicate that the parameter of a line is different on
the two sides of the dotted line.

Vertices with degree 2 do not get a parameter (they are only used to force the
two incident edges to have opposite orientations), and get weight 1.

b =
1 1
b b

The partition function of a given ice graph is then defined as the sum, over all
its ice states, of the products of weights of all vertices.

To simplify notations, we will denote by XN the vector of variables (x1, . . . , xN ).
We use the notation X\x to denote the vector X without the variable x.

3.2. Partition functions for classes of ASM’s. We give in Figures 3, 4, and 5
the ice models corresponding to the classes of ASM’s that we shall study, and their
partition functions. The bijection between (unrestricted) ASM’s and states of the
square ice model with “domain wall boundary” is now well-known (cf. [7]), and the
bijections for the other symmetry classes may be easily checked in the same way.
The correspondence between orientations of the ice model and entries of ASM’s is
given in Figure 2.

1 −1 0 0 0 0

Figure 2. The correspondence between ice states and ASM’s

Z(N ; x1, . . . , xN , xN+1, . . . , x2N ) =

x1

x2

xN

xN+1 x2N

Figure 3. Partition function for ASM’s of size N

The reader may notice that the grid used to define ZQT(4N) sligthly differs
from the one used by Kuperberg (the central vertices are treated in a different
manner, and the line xy only carries a single parameter x2N in Kuperberg’s model).
ZHT(2N) also appears in Kuperberg’s paper [7] with a single parameter on the xy
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ZHT(2N ; x1, . . . , xN−1, xN , . . . , x2N−1, x, y) =

x1

xN−1

y
x

xN x2N−1

x1

x2

xN

x

xN+1 x2N y

= ZHT(2N + 1; x1, . . . , xN , xN+1, . . . , x2N , x, y)

Figure 4. Partition functions for HTASM’s

ZQT(4N ; x1, . . . , x2N−1, x, y) =

b

b

b

b

b

b

x1

x2

x2N−1

x

y

b

b

b

b

b

b

x1

x2

x2N

x

y

= ZQT(4N + 2; x1, . . . , x2N , x, y)

Figure 5. Partition functions for (q)QTASM of even size
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line; ZHT(2N+1) appears identically in Razumov and Stroganov’s paper [11] (where
a different convention is used for the weights of vertices).

With these notations, Theorem 3 will be a consequence of the following one
which addresses the concerned partition functions.

Theorem 6. When a = ω6 = exp(iπ/3), one has for N ≥ 1:

σ(a)ZQT(4N ; X2N−1, x, y) = ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y)
(8)

and

σ(a)ZQT(4N+2; X2N , x, y) = ZHT(2N+1; X2N , x, y)Z(N ; X2N)Z(N+1; X2N , x, y).
(9)

Equation (9) is new; Equation (8) is due to Kuperberg [7] for the case x = y. To
see that Theorem 6 implies Theorem 3 (and Theorem 1), we just have to observe
that when a = ω6 and all the variables are set to 1, then the weight at each vertex
is σ(a) = σ(a2) = i

√
3 thus the partition function reduces (up to multiplication by

σ(a)number of vertices) to the number of states. This is summarized in the following
proposition, where 1 denotes the vector of all variables set to 1.

Proposition 1. For a = eiπ/3, we have:

Z(N ;1) = (i
√

3)N2

A(N) (10)

ZHT(2N ;1) = (−1)N3N2

AHT(2N) (11)

ZHT(2N + 1;1) = 3N2+NAHT(2N + 1) (12)

ZQT(4N ;1) = −i.32N2−1/2AQT(4N) (13)

ZQT(4N + 2;1) = 32N2+2NAQT(4N + 2). (14)

4. Proofs

To prove Theorem 6, the method, inspired from [7], is to identify both sides of
equations (8) and (9) as Laurent polynomials, and to produce as many specializa-
tions of the variables that verify the equalities, as needed to imply these equations
in full generality.

In previous works [7, 12], the final point in proofs is the evaluation of determi-
nants or Pfaffians; in our proof of Theorem 6, we are able to avoid this computation
by using symmetry properties.

4.1. Laurent polynomials. Since the weight of any vertex is a Laurent polyno-
mial in the variables xi, x and y, the partition functions are Laurent polynomials in
these variables. Moreover they are centered Laurent polynomials, i.e. their lowest
degree is the negative of their highest degree (called the half-width of the poly-
nomial). In order to divide by two the number of non-zero coefficients (hence the
number of required specializations) in x, we shall deal with Laurent polynomials of
given parity in this variable. To do so, we group together the states with a given
orientation (indicated as subscripts in the following notations) at the edge where
the parameters x and y meet.

So let us consider the partition functions:

• ZQT(4N ; X2N−1, x, y) and ZQT(4N ; X2N−1, x, y), respectively odd and even

parts of ZQT(4N ; X2N−1, x, y) in x;
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• ZQT(4N + 2; X2N , x, y) and ZQT(4N + 2; X2N , x, y), respectively odd and

even parts of ZQT(4N + 2; X2N , x, y)in x;

• ZHT(2N ; X2N−1, x, y) and ZHT(2N ; X2N−1, x, y), respectively parts with
the parity of N and of N − 1 of ZHT(2N ; X2N−1, x, y) in x;

• and ZHT(2N + 1; X2N , x, y) and ZHT(2N + 1; X2N , x, y), respectively parts
with the parity of N − 1 and of N of ZHT(2N + 1; X2N , x, y) in x.

With these notations, Equations (8) and (9) are equivalent to the following:

σ(a)ZQT(4N ; X2N−1, x, y)=ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y),
(15)

σ(a)ZQT(4N ; X2N−1, x, y)=ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y),
(16)

σ(a)ZQT(4N + 2; X2N , x, y)=ZHT(2N + 1; X2N , x, y)Z(N + 1; X2N , x, y)Z(N ; X2N ),
(17)

σ(a)ZQT(4N + 2; X2N , x, y)=ZHT(2N + 1; X2N , x, y)Z(N + 1; X2N , x, y)Z(N ; X2N ).
(18)

Lemma 7. Both left-hand side and right-hand side of Equations (15-18) are cen-
tered Laurent polynomials in the variable x, odd or even, of respective half-widths
2N − 1, 2N − 2, 2N , and 2N − 1. Thus, to prove each of these identities it is suf-
ficient to exhibit specializations of x for which the equality is true, and in number
strictly exceeding the half-width.

Proof. To compute the half-width of these partition functions, we have to count
the number of vertices in the ice models, and take note that non-zero entries of the
ASM (i.e. the first two orientations of Figure 1) give constant weight σ(a2). Also,
a line whose orientation changes (respectively does not change) between endpoints
must have an odd (respectively even) number of these ±1 entries.

We give the details for Equation (15):

• The term Z(N ; X2N−1, y) is a constant in x.
• For Z(N ; X2N−1, x), the variable x appears in the parameter of the N

vertices of the rightmost vertical line. On this line, for each state of the
model, exactly one vertex gives a constant weight σ(a2), the other N − 1
contribute for 1 to the half-width.

• For ZHT(2N ; X2N−1, x, y), we have N vertices on the line that carries the
parameter x, and an even number of them gives a constant weight.

• For ZQT(4N ; X2N−1, x, y), we have in the same manner 2N − 1 vertices
that carries the parameter x, and an even number of them gives a constant
weight σ(a2).

This proves that both the left-hand side and the right-hand side of equation (15) are
odd Laurent plynomial of half-width 2N − 1. The assertions on Equations (16-18)
are treated in the same way. �

4.2. Symmetries. To produce many specializations from one, we shall use sym-
metry properties of the partition functions. The crucial tool to prove this is the
Yang-Baxter equation that we recall below.
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Lemma 8. [Yang-Baxter equation] If xyz = a, then

x

y

z

=

x

y

z

. (19)

The following lemma gives a (now classical) example of use of the Yang-Baxter
equation.

Lemma 9.

x

y
. . . =

y

x
. . . . (20)

Proof. We multiply the left-hand side by σ(az), with z = axy. We get

σ(az)
x

y
. . . =

y

x
z . . .

=
y

x
z . . .

=
y

x
. . . z

=
y

x
. . . z

=
y

x
. . . σ(az)

�

The same method, together with the easy transformation

z =
(

σ(az) + σ(a2)
)

(

+
)

(21)

gives the following lemma.

Lemma 10.

x

y
. . . =

σ(a2) + σ(xy)

σ(a2yx) y

x
. . . (22)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . .

(23)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . .

(24)

We use Lemmas 9 and 10 to obtain symmetry properties of the partition func-
tions, that we summarize below, where m denotes either 2N or 2N + 1.
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Lemma 11. The functions Z(N ; X2N) and ZHT(2N +1; X2N , x, y) are symmetric
separately in the two sets of variables {xi, i ≤ N} and {xi, i ≥ N + 1}, the
function ZHT(2N ; X2N−1, x, y) is symmetric separately in the two sets of variables
{xi, i ≤ N − 1} and {xi, i ≥ N}, and the functions ZQT(2m; XN−1, x, y) are
symmetric in their variables xi.

Moreover, ZQT(4N + 2; . . . ) is symmetric in its variables x and y, and we have
a pseudo-symmetry for ZQT(4N ; . . . ) and ZHT(2N ; . . . ):

ZQT(4N ; X2N−1, x, y) =
σ(a2) + σ(xy)

σ(a2yx)
ZQT(4N ; X2N−1, y, x), (25)

ZHT(2N ; X2N−1, x, y) =
σ(a2) + σ(xy)

σ(a2yx)
ZHT(2N ; X2N−1, y, x). (26)

Proof. For Z(N ; . . . ), ZHT(m; . . . ) and ZQT(2m; . . . ), the symmetry in two “con-
secutive” variables xi and xi+1 is a direct consequence of Lemma 9.

For the (pseudo-)symmetry of ZQT(2m; . . . ), we use the easy observations:

= b

b

b

b and = b b (27)

which gives us the following modification of the grid in size 4N + 2:

ZQT(4N + 2; X2N , x, y) =

b

b

b

b

b

b

x

y

=

y x

b

b

b

b

b

b

b
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and in size 4N :

ZQT(4N ; X2N−1, x, y) =

b

b

b

b

b

bx

y

=

y x

b

b

b

b

b

Now for ZQT(4N +2; . . . ), Lemma 9 allow us to exchange the lines of parameters
x and y, which proves the symmetry. for ZQT(4N ; . . . ), we apply Lemma 10 to
conclude.

The last assertion concerns ZHT(2N ; . . . ), and Lemma 10 gives directly (26)
without any modification of the graph.

�

Remark 12. It should be clear, but is useful to note, that we have analogous
properties for the even and odd parts of the partition functions.

The next (and last) symmetry property, proved by Stroganov [14], appears when
the parameter a takes the special value ω6 = exp(iπ/3).

Lemma 13. When a = ω6 = exp(iπ/3), the partition function Z(N ; X2N) is
symmetric in all its variables.

Stroganov proved this surprising symmetry property by a study of Izergin-
Korepin determinant. A proof only involving Yang-Baxter equation has recently
been given in [1].

4.3. Specializations, recurrences. The aim of this section is to give the value
of the partition functions in some specializations of the variable x or y. The first
result is due to Kuperberg; the others are very similar.

Lemma 14. [specialization of Z; Kuperberg] If we denote

A(xN+1, X2N\{x1, xN+1}) =
∏

2≤k≤N

σ(axkxN+1)
∏

N+1≤k≤2N

σ(a2xN+1xk),

A(xN+1, X2N\{x1, xN+1}) =
∏

2≤k≤N

σ(axN+1xk)
∏

N+1≤k≤2N

σ(a2xkxN+1),
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then we have:

Z(N ;axN+1, X2N\x1) = A(xN+1, X2N\{x1, xN+1})Z(N − 1; X2N\{x1, xN+1}),
(28)

Z(N ;axN+1, X2N\x1) = A(xN+1, X2N\{x1, xN+1})Z(N − 1; X2N\{x1, xN+1}).
(29)

Proof. We recall the method to prove equation (28). We consider the crossing of
the lines of parameter x1 and xN+1 which could of the following two types:

σ(a2) σ(ax)

We observe that when x1 = āxN+1, the parameter of the vertex at the crossing
of the two lines of parameter x1 and xN+1 is x = x1x̄N+1 = ā. Thus the weight of
this vertex is σ(aā) = σ(1) = 0 in the second orientation on the figure above. This
forces the orientation of this vertex to be the first described in this figure. But this
orientation implies the orientation of all vertices in the row x1 and in the column
xN+1, as shown on Figure 6. The non-fixed part gives the partition function Z in
size N −1, without parameters x1 and xN+1, and the weights of the fixed part gives
the factor A(. . . ).

x1 = axN+1

xN

x2

xN+1 x2N

x1 = ax1

xN

x2

xN+1 x2N

Figure 6. Fixed edges for (28) on the left and (29) on the right

The case of (29) is similar, after using Lemma 11 to put the line xN+1 at the
top of the grid, as shown on Figure 6.

�

We will need the following application of the Yang-Baxter equation, which allows,
under certain condition, a line with a change of parameter to go through a grid.
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Lemma 15.

x

ax

=

x

ax

(30)

Proof. We iteratively apply Lemma 8 on the rows, and row by row:

x

ax
=

x

xax

=
x

xax

=
x

xax

=
ax

x
.

�

Lemma 16. [specialization of ZHT] If we denote

A1
H(x1, X2N\x1) =

∏

1≤k≤N

σ(a2x1xk)
∏

N+1≤k≤2N

σ(axkx1),

A
1

H(x1, X2N\x1) =
∏

1≤k≤N

σ(a2xkx1)
∏

N+1≤k≤2N

σ(ax1xk),

A0
H(xN , X2N−1\xN ) =

∏

1≤k≤N−1

σ(axkxN )
∏

N≤k≤2N−1

σ(a2xNxk),

A
0

H(xN , X2N−1\xN ) =
∏

1≤k≤N−1

σ(axNxk)
∏

N≤k≤2N−1

σ(a2xkxN ),

then for ⋆ = , , , and � = , , , respectively, we have

Z⋆
HT(2N + 1; X2N , x,ax1)=A1

H(x1, X2N\x1)Z
�
HT(2N ; X2N\x1, x1, x), (31)

Z�

HT(2N + 1; X2N , x,ax1)=A
1

H(x1, X2N\x1)Z
⋆
HT(2N ; X2N\x1, x, x1), (32)

Z⋆
HT(2N ; X2N−1, x,axN)=σ(axxN )A0

H(xN , X2N−1\xN )Z�

HT(2N − 1; X2N−1\xN , x, xN ),
(33)

Z�

HT(2N ; X2N−1,axN, y)=σ(axNy)A
0

H(xN , X2N−1\xN )Z⋆
HT(2N − 1; X2N−1\xN , y, xN ).

(34)

Proof. The proof is similar to the previous one, with the difference that before
looking at fixed edges, we need to multiply the partition function by a given factor;
we interpret this operation by a modification of the graph of the ice model, and
apply Lemma 15. It turns out that in each case, the additional factors are exactly
cancelled by the weights of fixed vertices.
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To prove (31), we multiply the left-hand side by
∏

N+1≤k≤2N

σ(a2xky),

which is equivalent to adding to the line of parameter y a new line ay just below the
grid; Lemma 15 transforms the graph of Figure 7(a) into the graph of Figure 7(b).
When we put y = ax1, we get the indicated fixed edges, which gives as partition
function

∏

N+1≤k≤2N

σ2(axkx1)
∏

1≤k≤N

σ(a2x1xk)ZHT(2N ; X2N\x1, x1, x).

x1

xN

x

ay

xN+1 x2N

y

(a)

x1

xN

x

y xN+1 x2N

ay = x1

(b)

Figure 7. Proof of (31)

Since a2xky = axkx1, the equation simplifies. To conclude, we observe that if
we start with an edge going out from the crossing x/x2N (function ZHT) we get at

the end the same orientation (function ZHT).
The proof of equations (32-34) follows the same path. We give in Figure 8 the

modifications performed to the graph for the proof of (32).
�

Lemma 17. [specialization of ZQT] If we denote

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ(a2xkx1)σ(ax1xk),

AQ(x1; Xm−1\x1) =
∏

1≤k≤m−1

σ(a2x1xk)σ(axkx1),

then for ⋆ = , , , and � = , , , respectively, we have:

Z⋆
QT(2m; Xm−1,ax1, y) = σ(ax1y)AQ(x1, Xm−1)Z

�
QT(2m − 2; Xm−1\x1, y, x1),

(35)

Z�

QT(2m; Xm−1, x,ax1) = σ(axx1)AQ(x1; Xm−1\x1)Z
⋆
QT(2m − 2; Xm−1\x1, x1, x).

(36)
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x1

xN

x

ay

xN+1 x2N

y

(a)

x1

xN

x

xN+1 x2N

y = ax1

ay = x1

(b)

Figure 8. Proof of (32)

Proof. The proof is very similar to the previous one: we add weighted vertices to the
graph, then apply Lemma 15, identify the edges that are fixed by the specialization
of the parameter, and conclude by observing that the identity that we obtain can be
simplified by the added weights. The corresponding graphs are given in Figure 9;
the symbol △ means a change of orientation only when m is even.

�

Remark 18. By using the (pseudo-)symmetry in (x, y), we may transform any
specialization of the variable y into a specialization of the variable x. Moreover, by
using Lemma 11 and (when a = ω6) Lemma 13, we obtain for Z, ZHT and ZQT,
2N independent specializations of the variable x.

4.4. Special value of the parameter a; conclusion. When a = ω6 = exp(iπ/3),
two new ingredients may be used. The first one is Lemma 13, as mentioned in
Remark 18. The second one is that with this special value of a we have:

σ(a) = σ(a2) σ(a2x) = −σ(āx) = σ(ax̄). (37)
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b

b

b

b

b

ut

x1

xm−1

x

ax y

=

b

b

b

b

b

ut

x = ax1

x1
xm−1

yax

b

b

b

b

b

ut

ay

x1

xm−1

x

y

=

b

b

b

b

b

ut
x

x1

xm−1

y = ax1

ay

Figure 9. Proof of (35-36)

which implies that the products appearing in Lemmas 14, 16 and 17 may be written
in a more compact way:

A(xN+1, X2N\{x1, xN+1}) = σ(a)
∏

k 6=1,N+1

σ(axkxN+1),

A(xN+1, X2N\{x1, xN+1}) = σ(a)
∏

k 6=1,N+1

σ(axN+1xk),

A1
H(x1, X2N\x1) =

∏

1≤k≤2N

σ(axkx1),

A
1

H(x1, X2N\x1) =
∏

1≤k≤2N

σ(ax1xk),

A0
H(xN , X2N−1\xN ) =

∏

1≤k≤2N−1

σ(axkxN),

A
0

H(xN , X2N−1\xN ) =
∏

1≤k≤2N−1

σ(axNxk),

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ2(ax1xk),

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ2(axkx1).
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Thus we get by comparing:

A(xi, X2N\xi, x)A1
H(xi, X2N\xi) = σ(axxi)AQ(xi, X2N\xi)

A(xi, X2N\xi, x)A
1

H(xi, X2N\xi) = σ(axix)AQ(xi, X2N\xi),

whence (15) and (16) imply that (17) and (18) are true (in size 4N + 2) for the
2N specializations x = a±1xi (1 ≤ i ≤ N). It is enough to prove (18) (Laurent
polynomials of half-width 2N − 1), but we still need one specialization to get (17)
(half-width 2N).

For (15) and (16), we observe the same kind of simplification

A(xi, X2N−1\xi)σ(axxi)A
0
H(xi, X2N−1\xi) = σ(axxi)AQ(xi, X2N−1\xi),

whence (18) and (17) for the size 4N − 2 imply that (15) and (16) are true for
the N specializations x = axi, N ≤ i ≤ 2N − 1. We obtain in the same way the
coincidence for the N specializations x = axi, N ≤ i ≤ 2N − 1. Thus we have
2N specialiations of x: it is enough both for (15) (half-width 2N − 1), and for (16)
(half-width 2N − 2).

At this point, we have almost proved

((15) and (16), in size 4N) =⇒ ((17) and (18), in size 4N + 2) =⇒ ((15) and (16),
in size 4N + 4);

almost, because we still need one specialization for (17).

We get this missing specialization, not directly for ZQT, ZQT, ZHT and ZHT, but

for the original series ZQT(4N + 2; X2N , x, y) and ZHT(2N + 1; X2N , x, y): indeed
if we set x = ay we may apply Lemma 15.

b

b

b

b

x1

x2N

ay

y

=

b

b

b

b

y

x1

x2N

ay

ZQT(4N+2; X2N ,ay, y) = σ(a)
∏

1≤k≤2N

σ(axky)σ(a2yxk)ZQT(4N ; X2N\x2N , x2N , x2N )
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x1

xN

ay

xN+1 x2N y

=

x1

xN

y

xN+1 x2N

ay

ZHT(2N+1; X2N ,ay, y) =





∏

1≤k≤N

σ(axky)
∏

N+1≤k≤2N

σ(a2yxk)



 ZHT(2N ; X2N\xN , xN , xN )

This way, we get another point where (9) is true, and thus, because we already
have (18), by difference we obtain that (17) holds for y = ax.

This completes the proof of Theorem 6.

5. Open questions

The first open problem concerns the so-called q-enumeration of ASM’s, which
consists in counting ASM’s (or classes of symmetry of ASM’s) with respect to their
number of −1 entries (to the number of orbits of −1 entries in the case of symmetric
ASM’s). For a generic value of the global parameter a, when we put all variables
to 1, the weight of zero entries in the ASM (σ(a)) is different from the weight of
non-zero entries (σ(a2)). This may allow a q-enumeration of ASM’s. But in our
case, since we fix the value of a to exp(iπ/3), we have σ(a) = σ(a2), thus we cannot
keep the trace of non-zero entries. The partition functions as we have defined them
do not seem to factor for other values of a.

The second question is a very frustrating one, and is common to all these beau-
tiful equinumeration formulas: is it possible to give a bijective explanation to equa-
tion (4), as well as to equations (1) and (2-3)?

As an indication of what the “right” bijection should look like, let us note that,
in the qQTASM case, the restricted ice models that define the partition functions
ZQT(4N+2) and ZQT(4N+2) correspond respectively to those qQTASMs where the

four central entries are (0,−1,−1, 0) and (1, 0, 0, 1); similarly, the ice models that

defins partition functions ZHT(2N + 1) and ZHT(2N + 1) correspond respectively
to those HTASMs where the center entry is 1 and −1. Thus, a consequence of
Equations (17) and (18) is that the total proportion of qQTASMs (of size 4N + 2)
with two negative entries among the four central entries, is exactly the proportion
of HTASMs (of size 2N + 1) with negative central entry; in [11], Razumov and
Stroganov proved this proportion to be exactly N

2N+1
. This observation gives a new

occurrence of the 1/N phenomenon, as defined in [15].
A last question deals with the link pattern distribution of FPL’s (Fully Packed

Loop configurations, in bijection with ASM’s). This question arose in the intriguing
Razumov-Stroganov conjecture [9, 10]. It appears that Equations (4) and (1) can
be refined into Conjectures 5 and 6 presented in [3].
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