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The aim of this note is to show how the introduction of certain tableaux, called
Catalan alternative tableaux, provides a very simple and elegant description of the
product in the Hopf algebra of binary trees defined by Loday and Ronco. Moreover,
we use this description to introduce a new associative product on the space of binary
trees.

1. Introduction

Loday and Ronco defined in [5] an interesting Hopf algebra structure on the linear
span of rooted planar binary trees. This algebra is defined as a sub-algebra of the
Malvenuto-Reutenauer Hopf algebra of permutations. Let Sn be the symmetric group
and k be a ground field. We denote by k[Sn] the group algebra. Malvenuto and
Reutenauer construct in [6] a Hopf algebra structure on

k[S∞] =
⊕

n≥0

k[Sn].

It is worth to recall here that the Malvenuto-Reutenauer algebra contains the sum
of Solomon descent algebras Sol∞ =

⊕

n≥0
Soln with Soln of dimension 2n−1.

In [5], Loday and Ronco define a sub-Hopf algebra of k[S∞]:

k[Y∞] =
⊕

n≥0

k[Yn]

where Yn is the set of planar binary trees with n internal vertices.
The aim of this work is to present a very simple presentation for the product of

two trees in k[Y∞] through the use of Catalan alternative tableaux. These objects
were introduced by X. Viennot [12] as a special case of alternative tableaux, which
are in bijection with permutation tableaux. Permutations tableaux were introduced
by E. Steingrimsson and L. Williams [9], as a subclass of Γ-diagram defined by A.
Postnikov [8]. This notion was used by S. Corteel and L. Williams [2, 3] in the study
of the physical model named PASEP (partially asymmetric exclusion process), see
for example the seminal paper by B. Derrida and al. [4]. These tableaux are also
related to the study of total positivity for Grassmannian [13]. Both permutation and
alternative tableaux are in bijection with permutations, see for example P. Nadeau
[7]. The advantage of alternative tableaux is to preserve the symmetry between rows
and columns.
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This new interpretation of the Loday-Ronco product motivates the introduction of
a new associative product, that we call the # product, on the space of binary trees.
This new product is studied in [1] by F. Chapoton.

This article is constructed as follows: in Section 2 we recall the definition of the
Loday-Ronco algebra, then we introduce in Section 3 the Catalan alternative tableaux
and prove that they are in bijection with binary trees; we state and prove in Section
4 the main result of this work, and we introduce the new # product in Section 5.

2. The Loday-Ronco Hopf algebra

We recall the definition of the Loday-Ronco product of binary trees. Since this
product is inherited from the Malvenuto-Reutenauer product of permutations, we
shall first recall the definition of the product in k[S∞], denoted by ∗. We refer to [6]
for more details and only recall briefly the definition.

Let u = u1 u2 . . . , uk be a k-tuple of distinct integers. We define the standardization
of u and denote it by Std(u) as the unique permutation σ ∈ Sk that preserves the
relative order of the ui’s, i.e.

σi < σj ⇐⇒ ui < uj.

For example, Std(3275) = 2143. Conversely, for σ ∈ Sk a permutation and A =
{a1, a2, . . . , ak} a set of k (distinct) integers, we define σ|A the k-tuple with distinct
entries in A such that Std(σ|A) = σ. With this notation we may define the product
∗ in k[S∞] as follows. Let σ ∈ Sk and τ ∈ Sl. We set

σ ∗ τ =
∑

A⊔B={1,2,...,k+l}

σ|A.τ|B

where ⊔ denotes the disjoint union, and . stands for concatenation.
For example :

12∗213 = 12 435+13 425+14 325+15 324+23 415+24 315+25 314+34 215+35 214+45 213.

Remark 1. The product ∗ that we consider is sometimes known as the product in
the dual Malvenuto-Reutenauer algebra. But it is the one used in [5] to define the
Loday-Ronco algebra, that we shall now describe.

Let Yn denote the set of binary trees with n internal vertices. We recall that the
cardinality of Yn is given by the n-th Catalan number Cn = 1

n+1

(

2n

n

)

.

Let Ỹn denote the set of increasing binary trees, i.e. of binary trees such that each
internal vertex has a distinct label in {1, . . . , n}, and such that the labels increase
along the tree.

It is well known that increasing binary trees are in bijection with permutations: to
obtain the permutation from the tree, you just have to read the labels from left to
right.

Below is an example of a plane binary tree with 8 internal vertices, with a increasing
binary tree with the same underlying tree, and with the corresponding permutation
σ ∈ Sn.
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We denote by Ψ : Sn → Yn the composition of the bijection Sn ≃ Ỹn with the
projection Ỹn → Yn which consists in forgetting the labels. The induced linear map
Ψ : k[Sn] → k[Yn] has a linear dual Ψ∗ : k[Yn] → k[Sn] obtained by identifying each
basis with its own dual. For example

Ψ∗
( )

= 3412 + 4312 + 2413 + 4213 + 2314 + 3214.

We also define for any tree T the set

ZT = {σ ∈ Sn / Ψ(σ) = T}

so that Ψ∗(T ) =
∑

σ∈ZT
σ.

The inclusion map Ψ∗ gives rise to a graded linear map Ψ∗ : k[Y∞] → k[S∞] and
the main result in the construction of the Loday-Ronco algebra may now be stated
as (Theorem 3.1 in [5]):

Theorem 2. The image of the inclusion map Ψ∗ : k[Y∞] → k[S∞] is a sub-Hopf
algebra of k[S∞]. So, k[Y∞] inherits a structure of Hopf algebra.

3. Trees and Catalan alternative tableaux

We now present the Catalan alternative tableaux. Let us denote by N the set of
nonnegative integers. A Catalan alternative tableau in given by

• a path in N × N from {0} × N to N × {0} made of (0, 1) and (1, 0) steps. The
length of the path is called the size of the tableau, and the cells below the path
are simply called the cells of the tableau. The path defining the tableau can be
called the shape of the tableau.

• a set of blue and red dots in the cells of the tableau such that:
(1) there is no dot below a red dot;
(2) there is no dot on the left of a blue dot;
(3) any cell of the tableau is either below a red dot, or on the left of a blue

dot.
Let us give an example of a Catalan alternative tableau of size 23.
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It is possible to directly check that Catalan alternative tableaux are enumerated
by Catalan numbers (whence their name), but we shall use the following proposition,
more adapted to our context.

Proposition 1. The Catalan alternative tableaux of size n − 1 are in bijection with
binary trees with n internal nodes.

Proof. We refer to [10] (algorithm 2.2) for a formal proof and give here only the
idea of the construction. In fact, in that paper, the algorithm was given in term of
“Catalan permutation tableaux”, the subclass of permutation tableaux corresponding
to Catalan alternative tableaux, and discussed in [9].

We start with Catalan alternative tableau of size n − 1 and rotate it:

The thick line represents the tree under construction. Recursively, for any “Up-
Down” pattern

in the thick line, we operate a shift, and two cases are to be distinguished:
• if the corresponding corner in the tableau is blue:

t

s us

t

u

and we erase the row of the corner in the tableau;
• if the corresponding corner in the tableau is red:

s
 u

 t

s

t

u

and we erase the column of the corner in the tableau.
On the example, we obtain:
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=

It is not difficult to verify that this construction is a bijection. �

For a permutation σ ∈ Sn, its Up-Down sequence (cf. [11]) is the vector Q(σ) =
(q1, . . . , qn−1) ∈ {−1, +1}n−1 such that

qi = +1 iff σi+1 > σi.

It is clear that for any tree T , all the σ in ZT have the same Up-Down sequence,
which we may call the Up-Down sequence of T , also called canopy of the binary tree
T in [11].

Now we may view the shape of a Catalan alternative tableau of size n − 1 as a
vector in {−1, +1}n−1 (horizontal steps correspond to “-1” entries and vertical steps
to +1 entries).

We have the following property:

Proposition 2. The shape of the tableau associated to a tree T through the bijection
described in Proposition 1 is the Up-Down sequence of T , as well as the common
Up-Down sequence of any permutation σ in ZT .

Now the algorithm described above may be extended to labelled trees: we may put
n labels on the shape of a Catalan alternative tableau of size n − 1:

7 9

2 5

 3

 1  6

4 8

If we keep the labels of the nodes when we apply the algorithm to get a tree from
the tableau, we obtain a labelled tree

9

7

2

1

 5

8

4

6 3

In the previous example, we may say that the tableau was labelled with the permu-
tation 792531648. As a consequence of the bijection, we get the following property.
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Proposition 3. Let σ be a permutation of size n. We may label a tableau C with
σ, then apply the bijective algorithm. The labelled tree that we obtain is increasing if
and only if:

• the shape of C is the Up-Down sequence of σ;
• the position of the red and blue dots in C is the only one which gives the binary

tree Ψ(σ).

4. The product of trees through Catalan alternative tableaux

Now we come to the main result of this work.

Theorem 3. Let T1 and T2 be two binary trees. Their product in the Loday-Ronco
algebra

T1 ∗ T2 =
∑

T

is given by taking the sum over the trees T associated to Catalan alternative tableaux
in the union

U

C

C 2

 1

? C

C

?
 2

 1

where C1 and C2 are the Catalan alternative tableaux associated respectively to T1

and T2, and the question mark (?) represent any (valid) placement of (red and blue)
dots in the rectangles.

Proof. By definition of Ψ∗, we have:

(1) Ψ∗(T1 ∗ T2) = Ψ∗(T1) ∗ Ψ∗(T2) =
∑

σ1∈ZT1

∗
∑

σ2∈ZT2

σ2 =
∑

σ∈S

σ.

Let σ be an element of S. By definition of the product ∗ in the Malvenuto-
Reutenauer algebra, σ is of the form: σ = τ1.τ2 (concatenation) with the letters
appearing in τ1 and τ2 form a partition of {1, . . . , n}, and

(2) Ψ(τ1) = T1 and Ψ(τ2) = T2.

Thus if Ψ(σ) = T ,the Up-Down sequence of T Q(T ) is either Q(T1)UpQ(T2) or
Q(T1)DownQ(T2). Hence the form of the Catalan alternative tableau C associated
to T is one of the two given in the Theorem 3. We label the shape of C with the
entries of σ. The red and blue dots in C have to be placed in a position such that
by applying the bijective algorithm, we obtain an increasing binary tree. But if we
apply the algorithm to the part of C that carries the entries of τ1 (respectively τ2),
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Propositions 1 and 3 imply that the (red and blue) dots of C in the corresponding
subparts of C have to be placed in the same configuration than in C1 (respectively
C2). Thie implies that C has the required form.

Conversely, let T be a tableau of the form described in the Theorem 3, and σ ∈ ZT .
By cutting σ in two parts u1 and u2 of lengths the sizes of C1 and C2, we may write:
σ = u1.u2 with Std(u1) = τ1 and Std(u2) = τ2.

It is again a simple application of Propositions 1 and 3 that we have: Ψ(τ1) = T1

and Ψ(τ2) = T2, which was to be proved to complete the proof of Theorem 3. �

5. The # product of binary trees

In light of Theorem 3, it seems natural to introduce a new product on k[Y∞] as
follows.

Definition 4. We define the # product of two binary trees T1 and T2, associated
respectively to Catalan alternative tableaux C1 and C2 by:

T1 # T2 =
∑

T

where the sum is taken over the trees T associated to Catalan alternative tableaux in
the set:

C 1

? C 2

and the question mark (?) represent any (valid) placement of (red and blue) dots
in the rectangles.

It is clear that this defines an associative product on k[Y∞]. It is worth to note
that for T1 ∈ Yk and T2 ∈ Yl, then the product T1 # T2 is in Yk+l−1 (in this case the
number of internal edges is preserved).

We give below an example of this product, that should be checked by the reader.

# = + +
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(Xavier Viennot) LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33405

Talence cedex, FRANCE

E-mail address : viennot@labri.fr
URL: http://www.labri.fr/perso/viennot


